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Bell and Zeno

Karl Gustafson1

Bell’s inequalities and related inequalities of Wigner, Clauser–Horne–Shimony–Holt,
Accardi–Fedullo, Gudder–Zanghi, Herbert–Peres, Khrennikov, others, are shown to be
contained within a general operator trigonometry developed by this author starting in
1967. These inequalities are improved here to useful quantum spin correlation identities.
Secondly, the Zeno problems from quantum measurement theory are traced from early
work by this author starting in 1974, to the present. A Zeno Alternative that stresses
domain-theoretic properties as essential to distinguishing reversible from irreversible
quantum evolutions is presented.
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1. INTRODUCTION

Here we will take both Bell theory and Zeno theory from their beginnings
approximately 40 and 30 years ago, respectively, to the present. Of course the
ensuing developments in quantum mechanics related to Bell’s inequalities, and
to the Zeno measurement issues, are now both large enterprises. Thus, the pre-
sentation here will be very selective, and only from the author’s point of view.
It turns out, discovered by the author only in 1996, that much of the Bell theory
for quantum mechanics may be placed within a general operator trigonometry
which this author developed independently, starting in 1967. As to Zeno quantum
dynamics, this author was involved in the early work in 1974, and has recently
returned to that theory.

Section 2 will trace the Bell theory, and how it is contained within our operator
trigonometry. Section 3 will present what we will call here quantum trigonometric
identities, for lack of a better term. These make exact Bell-type inequalities.
Section 4 then traces the Zeno theory from our original work, with emphasis
on certain critical domain-theoretic issues that were not resolved then and that
continue to be overlooked. Section 5 presents our proposed Zeno Alternative. This
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leads to a reconsideration of the von Neumann projection axiom and Ludwig’s
effect operators within a larger picture which we call that of measurors/preparors.

2. BELL THEORY

Addressing fundamental issues raised by Einstein et al. (1935) concerning the
foundations of quantum mechanics (Von Neumann, 1932), Bell (1964) presented
his famous inequality

|P (a, b) − P (a, c)| ≤ 1 + P (b, c)

and exhibited quantum spin measurement configurations whose quantum expec-
tation values could not satisfy his inequality. Bell’s analysis assumed that two
measuring apparatuses could be regarded as physically totally separated, and free
from any effects from the other. Thus, his inequality could provide a test which
could be failed by measurements performed on correlated quantum systems. It
was therefore argued that local realistic hidden variable theories could not hold in
quantum mechanics if future physical experiments would violate Bell’s inequality.
Later, Aspect et al. (1982) indeed demonstrated violation of Bell’s inequality in
their laboratory experiments. But the controversy about the Bell inequality and re-
lated inequalities to be mentioned later and their physical implications, continues
to this day.

Bell’s arguments in arriving at his inequality were classical probabilistic
correlation arguments. However, it is known and easy to prove that this inequality
holds for any real numbers a, b, c in the interval [−1, 1]: then ab − bc + ac ≤
1. Here is a proof. From b2 ≤ 1 and c2 ≤ 1 we have b2(1 − c2) ≤ 1 − c2 and
hence b2 + c2 ≤ 1 + b2c2. Adding 2bc to both sides and multiplying by a2 ≤ 1
we therefore have a2(b2 + c2 + 2bc) ≤ b2 + c2 + 2bc ≤ 1 + b2c2 + 2bc, that is,
a2(b + c)2 ≤ (1 + bc)2. Taking the positive square root yields a(b + c) ≤ |a||b +
c| ≤ 1 + bc.

Wigner (1970) presented his own version, making more clear the issues of
locality and so-called realism. Furthermore, Wigner was sure to use quantum
mechanical probabilistic correlations. His version of Bell’s theory then becomes
the inequality
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where the θij are angles between spin directions ωi and ωk . There are three other
similar inequalities to take account of all possible configurations but we may speak
here only of this one.

Another important Bell-type inequality is that of Clauser et al. (1969). This
one is favored by experimentalists. As one experimentalist at the Angstrom In-
stitute in Uppsala told this author in 2002, “all one has to do is set it up and
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then turn the dial.” Let a, b, c, d be four arbitrary chosen unit vector directions
in plane orthogonal to the two beams produced by the source. Let vi(a) and
vi(d) be the “hidden” predetermined values ±1 of the spin components along a
and d, respectively, of particle 1 of the ith pair; similarly wi(b) and wi(c) for
particle 2 values along directions b and c. Then the average correlation value
for particle 1 spins measured along a and particle 2 spins measured along b is
E(a, b) = ∑N

i=1 vi(a)wi(b)/N . Taking into account in the same way the average
correlation values E(a, c), E(d, b), E(d, c) and adding up all pairs, one arrives at
the CHSH inequality

|E(a, b) + E(a, c) + E(d, b) − E(d, c)| ≤ 2.

In this author’s operator trigonometry, see the books (Gustafson, 1997;
Gustafson and Rao, 1997) for more background, we needed the following tri-
angle inequality. Let x, y, z be any three nonzero vectors in a real or com-
plex Hilbert space of any dimension. We take ||x|| = ||y|| = ||z|| = 1 for con-
venience. From 〈x, y〉 = a1 + ib1, 〈y, z〉 = a2 + ib2, 〈x, z〉 = a3 + ib3, define
angles φxy, φyz, φxz in [0, π ] by cos φxy = a1, cos φyz = a2, cos φxz = a3. Then,
φxz ≤ φxy + φyz. This rather natural inequality is less easy to prove than it looks,
but it can be established in several ways. However, the best way, in the author’s
opinion, is to form the Gram matrix

G =



〈x, x〉 〈x, y〉 〈x, z〉
〈y, x〉 〈y, y〉 〈y, z〉
〈z, x〉 〈z, y〉 〈z, z〉


 .

Then its determinant |G| satisfies

|G| = 1 + 2a1a2a3 − (
a2

1 + a2
2 + a2

3

) ≥ 0,

with strict positivity iff the vectors x, y, z are linearly independent. From |G| ≥ 0
it is easy to prove the triangle inequality. But the |G| ≥ 0 inequality is even more
fundamental and more important than the triangle inequality.

The author noticed in 1996 that the Accardi and Fedullo (1982) inequality

cos2 α + cos2 β + cos2 γ − 1 ≤ 2 cos α cos β cos γ

is contained in our Gram determinant inequality given above. The quantum spin
model with angles α, β, γ has a representation in a 2-dimensional complex Hilbert
space iff these angles satisfy the Accardi–Fedullo inequality. Immediately this
author saw that moreover, much of the Bell theory was implicitly already con-
tained within the author’s operator trigonometry. Without giving all details here,
“triangular-like” results of Gudder and Zanghi (1984), Herbert (1975), Peres
(1993), Khrennikov (2000), and those of Bell, Clauser, Horne, Shimony, Holt,
Wigner, Accardi, Fedullo, among others, can be placed within and clarified in the
operator trigonometry.
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Consider for example Wigner’s inequality above, for the case in which he
proved it, namely, all three directions being coplanar. Then, our Gram matrix
is singular, the determinant |G| = 0, and we may write the Accardi–Gustafson
inequality above as the equality
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3

) = 2a3(a3 − a1a2).

This is a sharpening of Wigner’s inequality.
For more information about Bell theory and all its ramifications, see e.g.,

the book Afriat and Selleri (1999) and other sources. For more details about the
relations between the Bell theory and the operator trigonometry, see the papers
Gustafson (1999, 2000, 2001, 2003, 2003a).

3. QUANTUM SPIN IDENTITIES

Here we would like to come up to date on the author’s notion of inequality
equalities (Gustafson, 2003), an unconventional terminology which we will re-
place here by: quantum spin correlation identities, or more generally, just quantum
trigonometric identities. In fact this notion is more general, and a larger theory
needs to be worked out, inasmuch as we are really talking about trigonometric
identities that hold for vectors (and operators) for general Hilbert space, motivated
however by the quantum mechanical setting discussed in this paper.

As a first example, consider Wigner’s version of the Bell inequality discussed
above. For the three coplanar directions, our corresponding inequality equality
given above, becomes in Wigner’s quantum spin setting terminology
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Violation of the conventionally assumed quantum probability rule |〈u, v〉|2 ≡
cos2 θu,v for unit vectors u and v representing prepared state u to be measured as
state v, is equivalent according to Wigner to the right side of this identity being
negative. This is his Bell “violation” test. However, from our point of view, there
is no violation, there is just a quantum trigonometric identity, valid for certain
formulations of measurement of certain spin systems.

As a second example, let us consider the important CHSH inequality given
above. Wishing now to preserve equality

|a · b + a · c + d · b − d · c| = |a · (b + c) + d · (b − c)|
= |‖b + c‖ cos θa,b+c + ‖b − c‖ cos θd,b−c|
= |(2 + 2 cos θbc)1/2 cos θa,b+c

+ (2 − 2 cos θbc)1/2 cos θd,b−c|
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Squaring this expression and writing everything quantum trigonometrically,

|a · b + a · c + d · b − d · c|2 = (2 + 2 cos θbc) cos2 θa,b+c

+ (2 − 2 cos θbc) cos2 θd,b−c)

+ 2(4 − 4 cos2 θbc)1/2 cos θa,b+c cos θd,b−c

= 4 cos2(θbc/2) cos2 θa,b+c

+ 4 sin2(θbc/2) cos2 θd,b−c

+ 4 sin θbc cos θa,b+c cos θd,b−c.

In the above we used two standard trigonometric half-angle formulas. Now sub-
stituting the double-angle formula sin θbc = 2 sin(θbc/2) cos(θbc/2) into the above
we arrive at

|a · b + a · c + d · b − d · c|2 = 4[cos θbc/2) cos θa,b+c + sin(θbc/2) cos θd,b−c]2

and hence the quantum CHSH equality

|a · b + a · c + d · b − d · c| = 2| cos(θbc/2) cos θa,b+c + sin(θbc/2) cos θd,b−c|
We may also write the righthand side as twice the absolute value of the two-vector
inner product

u1 · u2 ≡ (cos(θbc/2), sin(θbc/2)) · (cos θa,b+c, cos θd,b−c)

to arrive at the quantum trigonometric identity

|a · b + a · c + d · b − d · c| = 2(cos2 θa,b+c + cos2 θd,b−c)1/2| cos θu1,u2 |
The right sides of these equalities isolate the “classical limiting probability factor”
2 from the second factor, which may achieve its maximum

√
2. Fix any directions

b and c. Then choose a relative to b + c and choose d relative to b − c so that
cos2 θa,b+c = 1 and cos2 θd,b−c = 1, respectively. Now we may choose the free
directions b and c to maximize the third factor to cos θu1,u2 = ±1. But that means
the two vectors u1 and u2 are colinear and hence

u1 = (cos(θbc/2), sin(θbc/2)) = 2−1/2(cos θa,b+c, cos θd,b−c)

= 2−1/2(±1,±1)

and thus the important angle θbc is seen to be ±π/2. More to the point, our identity
allows one to exactly trace out the “violation regions” analytically in terms of the
trigonometric inner product condition 1 ≤ |u1 · u2| ≤ √

2.
Let us summarize the above. One started with a classical probability correla-

tion definition and derived an inequality | · · · | ≤ 2. The “equality” version of this
classical probability version would be in the individual terms

|vi(a)(wi(b) + wi(c)) + vi(d)(wi(b) − wi(c))| = 2
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On the other hand, inserting the quantum correlation definition into the left side
results in a quantum inequality | · · · | ≤ 2

√
2. Our equality version of this becomes

the vector trigonometric identity

| cos θab + cos θac + cos θbd − cos θdc|
= 2(cos2 θa,b+c + cos2 θd,b−c)1/2| cos θu1,u2 |.

One could call this a quantum spin correlation identity. However, it is also, math-
ematically, a new result in vector trigonometry in Hilbert space.

4. ZENO (PARMENIDES) THEORY

Because space in this paper is very limited, and because we are giving a
mathematically more complete account of our results for the Zeno problem else-
where (Gustafson, in press), in this and the next section we will restrict ourselves
to presenting (1) some little known historical facts about these problems, (2) a
quick summary of our investigations to date.

The term Zeno Paradox, i.e., “a watched pot never boils,” was introduced in
Misra and Sudarshan (1977) to highlight certain fundamental issues in quantum
mechanical measurement theory. There is a long history to such quantum mea-
surement problems. For example, Von Neumann (1932) when created his Hilbert
space model of quantum mechanics, proved that any given state φ of a quantum
mechanical system can be steered into any other state ψ in the Hilbert space by
an appropriate sequence of very frequent measurements. Thus, in particular, you
can freeze a quantum evolution in time by “continually watching it.” The allusion
to the Greek Zeno refers to a debate which he and Parmenides had with Socrates
in Athens approximately 445 BC (Guthrie, 1965). Parmenides, an elderly philoso-
pher, presented to Socrates an interesting proposition to start the debate: reality
never changes, therefore motion is not possible. Although Parmenides relied on
the younger Zeno for argumentive support, the originating thesis was that of Par-
menides. Thus, it might be more accurate to call the quantum versions Parmenides
Paradox and Parmenides theory, a suggestion we make here and which we have
not seen advanced before.

This author came to these issues through the important and sometimes over-
looked paper of Friedman (1972). As you read this paper you find, at least to this
author’s knowledge, that the first mathematical formulation of the quantum Zeno
problem was that of Friedman and his Ph.D. advisor, Ed Nelson at Princeton.
Their formulation was motivated to some extent also by an earlier formulation
by Feynman (1948) concerned with whether one can determine that a particle
trajectory lies within a prescribed space–time region. The analysis of Friedman
(1972) leads to the statement there “We may interpret the state of affairs by saying
that for almost all times t , if a particle is “continually observed” to determine
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whether it stays in E , then the probability of an affirmative answer is the same as
the probability that the particle was in E initially.” That paper asks if

s- lim
n→∞(EeitHo/nE)n

exists and is a unitary group. Here E is an orthogonal projection onto a subspace M

and Ho a self-adjoint Hamiltonian operator. We (Gustafson, 1974, 1975) worked
on this latter question but never published our partial results, except for some
mention in Gustafson (1983). Those early results included the following:

• The projected evolution Zt = EeitHoE is a semigroup for all t ≥ 0 iff M is a
proper subspace without regeneration for Ut = eitHo , i.e., EUsE

⊥UtE = 0
for all t, s ≥ 0. If M is a reducing subspace for Ut , then Zt is a unitary
evolution.

• Assume HoE has dense domain. Then, EHoE is a symmetric operator,
and EHoE is self-adjoint if EHo is a closed operator.

We also had some limited results for the above limit existence question. However,
the key issue and requirement was clearly the denseness of D(HoE).

Recently, we have gone back to our original notes and one can do a little
better (Gustafson, 2004):

• D(HoE) is dense iff EHo is closeable. Then, (HoE)∗ = EHo ⊃ EHo is
defined with domain at least as large as D(Ho). Generally (EHoE)∗ =
EHoE when EHo is closeable.

For further recent results, see Gustafson (2004).
In our opinion, one can say that, essentially, all of these mathematical domain-

theoretic questions were overlooked or avoided in the early days of the Zeno work.
One way to do that is to go to the Heisenberg picture and only work with density
matrix (bounded) operators and to state evolutions ρ(t) = Utρ0U

∗
t . This was the

approach of Misra and Sudarshan (1977). However, even in that approach it was
necessary to just assume the existence of operator limits such as s- limn→∞ ρn(t)
and s- limn→∞ Tn(t) where ρn(t) = Tn(t)ρ0T

∗
n (t) and Tn(t) = (EU (t/n)E)n.

We cannot recount all the Zeno problem literature but do recommend the
book Namiki et al. (1997), among others.

5. A ZENO ALTERNATIVE

Using this author’s (initially, unrelated) results (Gustafson, 2000a) for duals
of operator compositions, one may state (Gustafson, 2003b, 2003c)

• Let A be any “continual measurement observable” in the sense
that A = A∗ is bounded, its range R(A) ⊃ D(Ho), and D(HoA) is
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dense. Then AHoA is self-adjoint and the exponentiation eiAHAt is
unitary.

• More generally, let A,B,C be any densely defined operators in the
Hilbert space. Suppose the domains and ranges of the compositions sat-
isfy D(BC) and D(ABC) are dense, R(BC) ⊃ D(A), R(C) = D(B),
D(BC)∗) ⊃ R(A∗), D(C∗) ⊃ R(B∗), and C and BC are 1–1. Then,
(ABC)∗ = C∗B∗A∗.

There are other similar technical results that guarantee a reversible, decoher-
ence free, unitary evolution. These results go beyond known Fredholm theory for
(AB)∗ = B∗A∗ which requires closed ranges and finite indices or at least finite
defect indices, which to us are not appropriate in most quantum measurement
situations.

From these considerations one may propose a Zeno Alternative, in which
one considers operators AHoC, where A and C satisfy the requisite conditions,
such as those given above, to assure a continually preconditioned and postcon-
ditioned Hamiltonian dynamics that continues to avoid wave function collapse.
These A and C, which we call measurors and preparors, are generally more
general than von Neumann’s measurement theory projections P = P ∗ = P 2

and Ludwig’s Effects, e.g., 0 ≤ A = A∗ ≤ 1. The picture becomes (Gustafson,
2004)

Projections ⊂ Effects ⊂ Measurors/Preparors.

Although the technical sufficiency conditions such as those stated above are rather
stringent, such domain and range conditions seem natural to quantum measure-
ment. The physical ansatz is that the measurors and preparors, e.g., A and C,
respectively, must have such dense, and compatible to Ho, domains and ranges in
order to account for, prepare, respectively, all wave functions ψ in R(Ho), D(Ho),
respectively, if one is to be entitled to draw complete conclusions about evolving
probabilities |ψ(t)|2.

6. CONCLUSIONS

We have reviewed our work, past and present, on the Bell theory and the
Zeno theory from quantum measurement theory.
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(See also arXiv.org/abs/quant-ph/0205013).

Gustafson, K. (2003b). A Zeno story. Quantum Computers and Computing 35(2), 35–55 (See also
xxx.lanl.gov/abs/quant-ph/0203032).

Gustafson, K. (2003c). The quantum Zeno paradox and the counter problem. In Foundations of
Probability and Physics-2, A. Khrennikov, ed., Växjo University Press, Sweden, pp. 225–236.
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